当前位置:首页> AI教程> A股市场成交量计算及数据导出方法分享

A股市场成交量计算及数据导出方法分享

释放双眼,带上耳机,听听看~!
本文分享了使用pandas进行A股市场成交量的计算和数据导出方法,包括数据合并、格式化处理和图形化展示,同时介绍了数据分析的思路和技巧。欢迎大家查阅并star项目地址fund_python。

兰叶春葳蕤,桂华秋皎洁。

1 前言

在前文中,作者已经分析了股票、基金的相关分析和计算,在本文中将继续分享A股市场成交量的计算,数据导出以及数据展示,主要是为了分享 pandas 数据处理的方法和思路,在本文中将涉及到 pandas 的数据合并以及 pandas 的数据导出。

2 数据准备

在之前的文章matplotlib 绘制上证指数图形 中,已经介绍了获取上证指数数据的方法,在本文中将使用同样的方法获取k线数据(数据来源为 eastmoney)。目前A股市场的总成交额包括上证指数和深证指数,因此需要综合计算两大指数的数据,即可获取最终的结果。上证指数代码 000001 和深证指数代码 399106。获取指数数据的代码如下所示:
A股市场成交量计算及数据导出方法分享
通过方法会得到截止到当天的交易数据,可以通过 print 函数来输出指数的交易历史数据,包括交易日期,指数点位,成交金额,成交量以及换手率等信息。

3 数据计算

在准备好交易历史数据后,就可以进行数据的合并计算。A 股市场的成交金额是两大市场的总和,在 pandas 中,我们需要先将数据进行提取并进行重命名,我们需要计算两个指数的交易总额,首先需要使用 pandas merge 方法进行数据合并,数据合并使用日期进行关联,这个类似于 sql 语法的关联查询。同时需要将交易金额进行格式化处理,毕竟都是跟着好几位零的数据。

A股市场成交量计算及数据导出方法分享

pandas 中,进行数据的计算十分简单,类似于四则运算即可生成一个新的数据列,两市的换手率计算比较复杂,需要根据成交总额除以两市总市值即可。接下来需要对日期进行格式化处理,提取出日期和年份数据,以方便图形化展示。

A股市场成交量计算及数据导出方法分享

由于历史数据是从20年开始抓取的,在图形展示时会形成较多的数据线,这里只需要展示22年以来的数据即可,在进行数据截取时,需要将 pandas 的 index 进行重置,否则截取的数据还是保留原来的索引,在后续计算中会导致计算错误。即使采用了近两年的数据,也会导致数据图形的 x 坐标密集化展示,因此需要使用 xticks 对坐标进行处理,该项处理在图形化展示中至关重要。
A股市场成交量计算及数据导出方法分享

4 数据导出

在上节中已经进行了数据的图形化处理,在本节中将把之前的数据进行导出,以便进行查看和接下来的处理。这里的数据导出采用两种方式,一种是简单的,一种是可以定制化的,以便设置单元格样式。

A股市场成交量计算及数据导出方法分享

导出的结果如下所示:

A股市场成交量计算及数据导出方法分享

3 总结

综上,本文使用了 pandas 进行数据计算和导出,主要介绍了数据计算的思路和方式,以及数据分析的一些技巧。相关代码已经上传至 github, 欢迎大家 star, 项目地址 fund_python

本网站的内容主要来自互联网上的各种资源,仅供参考和信息分享之用,不代表本网站拥有相关版权或知识产权。如您认为内容侵犯您的权益,请联系我们,我们将尽快采取行动,包括删除或更正。
AI教程

人工智能的历史及发展

2023-11-24 9:05:14

AI教程

构建由GPT-4和ChatGPT模型驱动的智能应用程序的API管理

2023-11-24 9:10:14

个人中心
购物车
优惠劵
今日签到
有新私信 私信列表
搜索