试下微调GPT-3做一个心理问答机器人

释放双眼,带上耳机,听听看~!
本文介绍了如何使用Colab和openai命令行工具来微调GPT-3模型,创建一个心理问答机器人。同时还提供了数据集格式要求和数据处理的方法。

试下微调GPT-3做一个心理问答机器人

前言

最近,笔者做的一个小程序还差最后一个心理问答的功能,主要功能基本就完成了。我想偷个懒,那就调用别人的API吧,正好GPT-3非常火,那就试试?

准备

Colab

这是一个谷歌的线上jupyter-notebook网站,可以直接在上面运行Python代码,非常方便:

网址传送门

最好就用这个吧,环境啥的都配好了,笔者之前的电脑有许多python的环境,但换电脑之后就好久没写过python了,所以也偷个懒,不安装环境了…

顺便提一下,单纯windows好像不能使用openai的命令行工具,而一台linux服务器可以使用,但如果是国内的服务器就会被墙,需要在对应服务器上去想一些办法。

所以,推荐用这个…

openai命令行工具

jupyter的单元格里输入以下命令安装一个命令行工具,就和你npm i -g nest一样:

! pip install --upgrade openai

试下微调GPT-3做一个心理问答机器人

Successfully installed🎉🎉🎉

一个API_KEY

这里创建并复制保存就可以了

然后继续在刚才的jupyter下面将这个API_KEY导出为环境变量:

import os

os.environ['OPENAI_API_KEY'] = '<your api key>'

试下微调GPT-3做一个心理问答机器人

顺便提一下:新用户都有18美元的免费额度可以试用

数据集格式要求

首先,openai官方文档上明确要求了传过去的数据集格式为jsonl格式的文件,就三点要求:

  1. utf-8编码
  2. 每行为一个正确的JSON格式
  3. 换行符为n

没啥说的,如下是一个笔者的数据集截图:

试下微调GPT-3做一个心理问答机器人

然后,你可以使用这行命令来校验你的数据集格式是否正确:

openai tools fine_tunes.prepare_data -f "./2.jsonl"

数据处理

如下是笔者的两个数据源(中文心理问答数据集,都是公开的(^_^)):

我们需要将这些数据处理里为问答对的模式,并遵循上面的jsonl格式:

{"prompt": "<prompt text>", "completion": "<ideal generated text>"}
{"prompt": "<prompt text>", "completion": "<ideal generated text>"}
{"prompt": "<prompt text>", "completion": "<ideal generated text>"}
...

由于数据标注得非常给力,笔者的数据集处理就非常简单了,基本没做什么复杂的转换…

处理第一个数据源

import json
from tqdm import tqdm

with open("./dataset/src/ques_ans1.json") as f:
  file_contents = f.read()
  
# print(file_contents)
parsed_json = json.loads(file_contents)
print(len(parsed_json))
for item in tqdm(parsed_json):
  question = item["ques_info"]["title"] + item['ques_info']['content']
  for ans in item["answers_info"]:
    if ans["recommend_flag"] == "推荐":
      goodAns = ans["content"]
      result = { "prompt": question, "completion": goodAns }
      with open("./dataset/target/1.jsonl", "a") as f:
        f.write(json.dumps(result) + "n")

非常简单的逻辑,就不过多介绍了,就是问题保留,答案只要是推荐,就与问题组成一个问答对,问题可是重复使用,直到答案用完;当然这段代码还有优化空间,但数据量不多,就算了。笔者懒😴

处理第二个数据源

import json
from tqdm import tqdm

with open("./dataset/src/EFA_Dataset_v20200314_latest.txt") as f:
  lines = f.readlines()
  
for line in tqdm(lines):
  parsed_line = json.loads(line)
  question = parsed_line["title"]
  for chat in parsed_line["chats"]:
    label = chat["label"]
    if "knowledge" in label and label["knowledge"] == True and label["negative"] == False:
      goodAns = chat["value"]
      result = { "prompt": question, "completion": goodAns }
      with open("./dataset/target/2.jsonl", "a") as f:
        f.write(json.dumps(result) + "n")

这里的逻辑也不难,只要答案是知识性的并且不是消极的,笔者就将其作为了一条问答对。

上传数据

然后我们将我们处理后的数据上传至Google drive进行持久化存储,你直接上传到colab也可以,不过断开连接后文件就消失了,你又要重新上传。

试下微调GPT-3做一个心理问答机器人

然后点击装载就会出现对应的文件夹,没有出来的可以点击附件的文件刷新按钮,然后就可以使用对应的文件了

开始微调

开始

然后,输入如下代码就可以开始微调了:

! openai api fine_tunes.create -t "https://b2.7b2.com/content/drive/MyDrive/2.jsonl" -m ada

注意,笔者这里只上传了一个8MB的文件,就花了免费额度的4美元;如果你也是免费用户,使用时不能超过15美元,即数据集不能太大(笔者最开始就上传了全部数据集254MB,就会报错)

-m 是你开始的基本模型的名称(ada、babbage、curie 或 davinci)。您可以使用后缀参数自定义微调模型的名称,ada最便宜,最快,笔者这里尝试一下就是使用的这个参数。

试下微调GPT-3做一个心理问答机器人

相关命令

微调过程中只要任务已经创建,就不会随这里colab的关闭而关闭,如下是恢复事件流的代码:

! openai api fine_tunes.follow -i <YOUR_FINE_TUNE_JOB_ID>

试下微调GPT-3做一个心理问答机器人
如上笔者等待了一段时间重新查看,它已经训练完成了,然后我们就可以输入最后一行给出的命令来演示结果

结果演示

这里还可以使用python进行调用,其他语言的使用方法见这

import openai
result = openai.Completion.create(
    model="<your model>", # 上面截图最后一行我打码的那部分
    prompt="我真的好累,压力超级超级大,周围人都在认真学习,我感觉我就是一个废物",
    max_tokens=1000)

completion = result["choices"][0]["text"]
print(completion.encode("raw_unicode_escape").decode("unicode_escape"))

这里最后是做了一个unicode编码转中文显示的操作;

如下是演示结果:

试下微调GPT-3做一个心理问答机器人

效果有点拉,不过也能接受,毕竟数据才8MB,模型也是用的那个最快最便宜的。

最后

我等着阿里通义千问的API出来…等不及了🤔

再次编写python代码,彷佛回到了大一暑假刚学python的日子,那时候还在为python爬虫的BUG而烦恼。

参考

本网站的内容主要来自互联网上的各种资源,仅供参考和信息分享之用,不代表本网站拥有相关版权或知识产权。如您认为内容侵犯您的权益,请联系我们,我们将尽快采取行动,包括删除或更正。
AI教程

使用TensorFlow进行心脏病分类预测的教程

2023-12-22 11:45:14

AI教程

基于深度学习的图像场景分类方法和代码实例

2023-12-22 12:02:14

个人中心
购物车
优惠劵
今日签到
有新私信 私信列表
搜索